AlMer

Seongkwang Kim3 Jincheol Ha! Mincheol Son'!
Byeonghak Lee?> Dukjae Moon® Joohee Lee® Sangyub Lee?
Jihoon Kwon® Jihoon Cho® Hyojin Yoon® Jooyoung Leel

IKAIST 2Sungshin Women's University 3Samsung SDS

2024. 02. 28.

Table of Contents

© Introduction

9 Preliminaries

© Recap on AIM

@ Change Log from KpqC Round 1

© AIM2: Mitigation on AIM Cryptanalysis

1/39

Introduction
[]

@ Introduction

2/39

Introduction
L]

MPCitH-based Digital Signature

o ZKP-based digital signature is based on a zero-knowledge
proof of knowledge of a solution to a certain hard problem
e For example, finding a preimage of a one-way function
o Efficiency of the ZKP-based signature is determined by choice
of one-way function and zero-knowledge proof system

o MPCitH paradigm is to build the ZKP system by simulating
an MPC process computing the one-way function
@ Characteristics of the MPCitH-based digital signature is:

Security relying only on the one-wayness of the one-way
function
Trade-off between time & size
Small public key and secret key
V" Relatively large signature size and sign/verify time

3/39

Introduction
[]

AlMer Signature

@ AlMer: MPCitH-based digital signature based on

o (Ver.1.0) AIM and BN-++ proof system
o (Ver.2.0) AIM2 and customized BN++ proof system

e AIM (and AIM2): symmetric primitive based one-way function
that fully exploits repeated multiplier technique to reduce a
signature size

Mer[e]
’—> 4
pt »| Mer|e,] Merle.] @ ct
L Mer|es) |

(t=3) xo%@
AIM

4/39

Preliminaries
o

© Preliminaries

5/39

Preliminaries
00000000000

/ZKP from MPC-in-the-Head

MPC-in-the-head FS-transform OWF

Y _ N N

Interactive
ZK

Digital
Signature

6/39

Preliminaries
0e000000000

MPC-in-the-Head

. Share
Variable Value
Party 1 Party 2 Party3 Party4 Party5b
T 5 6 1 3 9 2
y 10 0 6 7 5 6
z 9 4 1 2 7 1

Example of MPC-in-the-head setting for N = 5 parties over Fy;

@ MPC-in-the-head is a Zero-Knowledge protocol by running the
MPC protocol in prover's head

o In the multiparty computation setting, z(¥) denotes the i-th
party’s additive share of z, 3", 2() =

@ N parties have a shares of x, y, and z which satisfies xy = z.
They wants to prove that zy = 2z without reveal the value

@ N parties and verifier run 5 rounds interactive protocol
7/39

Preliminaries
[e]e] lelelelelelele]e)

MPC-in-the-Head - Toy Example

. Share
Phase Variable Value
Party 1 Party 2 Party 3 Party 4 Party 5
x 5 6 1 3 9 2
y 10 0 6 7 5 6
z 9 1 1 2 7 1
Phase 1 a 7 2 6 2 3 9
6 ! 3 0 1 3
c | 6 3 7 7 5

com h(5,10,9,7,6,4) h(6,0,4,2,4,6) h(1,6,1,6,3,3) h(3,7,2,2,0,7) h(9,5,7,3,1,7)

Gray values are hidden to the verifier

Phase 1
@ N parties generate the shares of the another multiplication
triples (a, b, ¢) which satisfies ab = ¢

e Each party commits® to their own shares and open it

1Commit means that keeping the value hidden to others, with the ability to

reveal the committed value later
8/39

Preliminaries
[e]e]e] lelelelelele]e)

MPC-in-the-Head - Toy Example

Share
Phase Variable Value
Party 1 Party 2 Party 3 Party 4 Party 5

RS
o o~ W

w

S

6 ! 3 0

Phase 1 a 7 2 6 2 3 9
1 3
7

c | 6 3 [

com h(5,10,9,7,6,4) h(6,0,4,2,4,6) h(1,6,1,6,3,3) h(3,7,2,2,0,7) h(9,5,7,3,1,7) -

Phase 2 Random challenge r = 5 from the verifier

Phase 2
@ Verifier sends random challenge r to parties

9/39

Preliminaries
0000e000000

MPC-in-the-Head - Toy Example

i Share
Phase Variable Value
Party 1 Party 2 Party 3 Party 4 Party 5
x 5 6 1 3 9 2
10 0 6 7 5 6
z 9 1 1 2 7 1
Phase 1 a 7 2 6 2 3 9
b 6 | 3 0 1 3
c | 6 3 7 7 5
com R(5,10,9,7,.6,4) h(6,0,4,2,4,6) h(1,6,1,6,3,3) h(3,7,2.2,0,7) h(9,5,7,3,1,7)
Phase 2 Random challenge r = 5 from the verifier
a 10 10 0 6 4 8
Phase 3 B 5 4 9 7 6 9
v 3 9 3 10 8 0
Phase 3

@ The parties locally set o”) =7 - 2 4+ a() B = () 4 p() and
broadcast them
@ The parties locally set
v\ =))))
rez2@® — @ 4o b® 4 8. g otherwise

10/39

Preliminaries
00000800000

MPC-in-the-Head - Toy Example

Share

Phase Variable Value
Party 1 Party 2 Party 3 Party 4 Party 5
T 5 6 1 3 9 2
10 0 6 7 > 6
z 9 1 1 2 7 1
Phase 1 a 7 2 6 2 3 9
b 6 1 3 0 1 3
c 1 6 3 7 7 5

com h(5,10,9,7,6,4) h(6,0,4,2,4,6) h(1,6,1,6,3,3) h(3,7,2,2,0,7) h(9,5,7,3,1,7) -

Phase 2 Random challenge r = 5 from the verifier
a 10 1 0 6 4 8
Phase 3 B 5 4 9 7 6 9
v 3 9 3 10 8 0

Phase 3 (Cont’)
e Each party opens v(¥) to compute v

o Ifab=cand zy = 2z, then v =0

11/39

Preliminaries
00000080000

MPC-in-the-Head - Toy Example

. Share
Phase Variable Value
Party 1 Party 2 Party 3 Party 4 Party 5
x 5 6 1 3 9 2
y 10 0 6 7 5 6
z 9 1 1 2 7 1
Phase 1 a 7 2 6 2 3 9
b 6 1 3 0 1 3
c | 6 3 7 7 5
com h(5,10,9,7,6,4) h(6,0,4,2,4,6) h(1,6,1,6,3,3) h(3,7,2,2,0,7) h(9,5,7,3,1,7) -
Phase 2 Random challenge r = 5 from the verifier
o 10 10 0 6 4 8
Phase 3 8 5 4 9 7 6 9
v 3 9 3 10 8 0
Phase 4 Random challenge i = 4 from the verifier
Phase 4

@ Verifier sends a hidden party index i to parties

12/39

Preliminaries
00000008000

MPC-in-the-Head - Toy Example

Share
Phase Variable Value
Party 1 Party 2 Party 3 Party 4 Party 5
x 5 6 1 3 9 2
y 10 6 7 5 6
z 9 4 1 2 7 1
Phase 1 a 7 2 6 2 3 9
b 6 4 3 0 1 3
c 4 6 3 7 7 5
com h(5,10,9,7,6,4) h(6,0,4,2,4,6) h(1,6,1,6,3,3) h(3,7,2,2,0,7) h(9,5,7.3,1,7) -
Phase 2 Random challenge = 5 from the verifier
@ 10 10 0 6 1 8
Phase 3 8 5 4 9 7 6 9
v 3 9 3 10 8 0
Phase 4 Random challenge i = 4 from the verifier
Phase 5 Open all parties except i-th party and check consistency
Phase 5
e Each party i € [N]\{i} sends (), 4@ 2 ¢ p@ and c®
to verifier

@ Verifier checks the consistency of the received shares

13/39

Preliminaries
00000000800

MPC-in-the-Head

@ Some agreed-upon circuit C' : F™ — F™ and some output y,
prover wants to prove knowledge of input x = (z1,...,2,)
such that C'(x) = y without revealing x

@ The single prover simulates N parties in prover's head. Prover
first divides the input x1,...,x, into shares :vgi), . ,xg)

e For each addition ¢ = a + b, ¢ = q() 4 p(@)

@ For each multiplication ¢ = ab, prover divides c into shares
¢ = ¢ then run multiplication check protocol

14 /39

Preliminaries
00000000080

MPC-in-the-Head - Toy Example

C(x1,22,23) = (21 + 22 - 3) - 22 = 10

Share
Variable Value
Party 1 Party2 Party3 Party4 Partyb
T 7 2 1 3 0 2
2 3 5 10 5 5 6
T3 9 5 9 3 10 3
I - X3 2 4 3 5 4 7
i 2 9 6 4 8 4 9
(1’1 + 9 - 1'3) o) 8 3 0 4 6 10

e Addition is almost free, so that efficiency is highly depend on
the number of the multiplications

@ Soundness error is proportional to 1/N and 1/|F|

15/39

Preliminaries
0000000000 e

Fiat-Shamir Transform

@ Prover derives r and i from hash of the data of previous round
without interaction. This technique is called Fiat-Shamir
Transform

@ Using Fiat-Shamir transform, interactive proof can be
transformed into non-interactive proof

@ Non-interactive zero-knowledge proof of knowledge of = which
satisfies f(z) = y for some one-way function f and output y
is a digital signature

e Public key: output y
e Private key: input x

16/39

Recap on AIM
9000000

© Recap on AIM

17/39

Recap on AIM
0@00000

AIM - Specification

pt

(t=3) XOII:[iv]

@ Mersenne S-box: Merl[e](z) = 2"~}

e Randomized affine layer: Lin(x) = Az + b

@ Repetitive structure

Merl[e;] -
’_» v Scheme A n [e e e3 e
»| Mer[eo] 9| Lin Mer[e,] @ ct AIM-I 128 128 2 3 927 - 5
AIM-IIl 192 192 2 5 20 - 7
Merfes] o 4 AIM-V 256 256 3 3 53 7 5
1

18/39

Recap on AIM
[e]e] lelele]e]

AIM - Design Rationale

Mer[e;]|

pt

Mer[eo] 9 Lin Merle,| B-@» ct

v 3

Mer|es]]

XOIF[iv]

Mersenne S-box
Merl[e](z) = 2" ~!

@ Only one multiplication is required for its proof (zy = x2°)
@ More secure than Inv S-box against algebraic attacks on [y
°

Providing moderate DC/LC resistance

19/39

Recap on AIM
[e]e]e] Jelele]

AIM - Design Rationale

Mer(ey] -
’—> 4
pt | Mer[eo] 9~ Lin Mer[e.]

L Merles] -9~

Random Affine Layer

XOIF[iv]

@ Random affine layer increases the algebraic degree of
equations over Fon

@ In order to mitigate multi-target attacks, the affine map is
uniquely generated for each user’s iv

20/39

Recap on AIM
[e]e]ele] lele]

AIM - Design Rationale

Mer(e;] -]
’_» hd
Mer[eo] | Lin Merle.| -

pt >
L Merl[es] |-

Repetitive Structure

A

ct

XOLU@

@ In ZKP-based digital signature, efficiency is highly depend on
the number of the multiplications

@ In BN++ proof system, when multiplication triples use an
identical multiplier in common, the proof can be done in a
batched way, reducing the signature size

@ AIM allows us to take full advantage of this technique

21/39

Recap on AIM
0000080

Algebraic Analysis on AIM

1
Mer|e1] AR
- Y
x > Mer|es] >, Lin z Mer[e,] —>@D—> ct
Y-
Mer[eg] U3 >
|
1
XOF|iv]
9e

@ y; = Merfe;](z) <= z = Mer[e;] ' (y) <= zy==z
@ = @®ct=Merle.](z) < z=Merfe.] (zDct) <= z(z@®ct) =2

@ y; = Mer[e;] o Mer[e;] ™ (y;) = Merle;] (Merle.](z) @ ct)

22/39

Recap on AIM
000000

Algebraic Analysis on AIM

Scheme #Var Variables (# Eq, Deg) Complexity
AlIM-I| n z (3n,10) 9300.8
2n oz, (3n,2) + (3n,4) 9214.9
3n. T,y Y2 (9n,2) 9222.8
AIM-1II n z (3n, 14) 4740
2n Z, Y2 (3n,2) + (3n,6) 9310.6
3n Z, Y1, Y2 (9n, 2) 9310.8
AIM-V n z (3n, 12) 9601.1
2n x, Y2 (3n,2) + (3n,8) 9406.2
3n Z, Y2, Y3 (6n,2) + (,4) 9510.4
an x, Y1, Y2, y3 (12n,2) 9530.3

23/39

Change Log from KpqC Round 1
[]

@ Change Log from KpqC Round 1

24 /39

Change Log from KpqC Round 1
[le]

Change of Specification

@ We enhance the symmetric primitive AIM — AIM2 without
performance degradation.

@ The number of parameter sets are decreased from 4 to 2. The
parameters are distinguished with name “-s” and “-f".

@ Two hash functions with the same input is now integrated:
Expand + Commit — CommitAndExpand.

@ The salt size is now halved: 2\ — X bits.
@ The message to be signed is now pre-hashed.

@ Hash functions are now domain-separated.

25/39

Change Log from KpqC Round 1
o]]

Other Changes

Implementational Change

@ We newly develop a reference code whose readability is significantly
enhanced.

@ There are now 4 types of source codes available: reference C,
optimized C, AVX2, and ARM64.

@ AVX2 optimization now enjoys a full parallelization of MPC
simulations (30% sign time reduction).

@ OpenSSL dependency is removed.
@ Memory usage is reduced (195 KB — 150 KB for aimer128f).
Editorial Change

@ The security proof (EUF-CMA) now guarantees full-bound security
rather than birthday-bound security.

@ Detailed specification which corresponds the reference code is now
available.

26/39

AIM2: Mitigation on AIM Cryptanalysis
L]

© AIM2: Mitigation on AIM Cryptanalysis

27/39

AIM2: Mitigation on AIM Cryptanalysis
@0000

Recent Analysis on AIM

Recent algebraic analysis on AIM:

@ Fukang Liu, et al. “Algebraic Attacks on RAIN and AIM Using
Equivalent Representations”, ToSC 2023.

@ Private communication with Fukang Liu.

@ Markku-Juhani O. Saarinen. “Round 1 (Additional Signatures)
OFFICIAL_.COMMENT: AIMER", pqc-forum?.

@ Kaiyi Zhang, et al. “Algebraic Attacks on Round-Reduced RAIN and
Full AIM-111", ASIACRYPT 2023.

There are two vulnerabilities in the structure of AIM.
@ Low degree equations in n variables.

@ Structural vulnerability: common input to the parallel S-boxes.

2htt’.ps ://groups.google.com/a/list.nist.gov/g/pqc-forum/c/BI2i1XblNy0
28/39

https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/BI2ilXblNy0

AIM2: Mitigation on AIM Cryptanalysis
(o] Jelele]

Low Degree Equations in n Variables

Fast exhaustive search by Fukang Liu. (ToSC 2023)

@ Build low degree equations in n

Scheme Var 7 Eq Deg Boolean variables.
AIM-I z 3n 10 @ Apply fast exhaustive search attack
AIM-III z 3n 14 . .. o

with memory-efficient Mobius
AIM-V z 3n 12

transform.

Scheme n Brute-Force [bits] Time [bits] Memory [bits]

AIM-I 128 2146.3 21862 (—10.1) 2617
AIM-II1 192 22118 22007 (—11.1) 2843
AIM-V 256 2276.7 22050 (—11.7) 2951

29/39

AIM2: Mitigation on AIM Cryptanalysis
(e]e] lele]

Structural Vulnerability - System with New Variables

Private communication with Fukang Liu.

Ve @ w:=pt~! = Mer[e](pt) = pt*“w
’—’ ! @ 2n-variable system having
pt »| Mer[e,) Merle.] @ ct .
e 5n quadratic eqs from
Mer|es] w = pt_l
. e 5n cubic eqs from Mer[e,]
(t=3) XOF[iv]

No practical attack exists on the above system, but it was not considered
in the first proposal.

30/39

AIM2: Mitigation on AIM Cryptanalysis
000e0

Structural Vulnerability - Efficient Brute-Force Search

NIST official comment on the additional signature by Saarinen.

e w:=pt~! = Merle](pt) = pt* w
Merle;]
’—’ @ Merle;](pt) can be computed by
ot Lol erfen) Merle.] l-gp <t precomputingethe linear matrix for
L E;:pt— pt?".
Merfes] @ It might enable faster exhaustive

1
((=3) XOF[] search.

We analyzed the gate-complexity of AIM using this approach and verified
that it is still larger than that of AES.

31/39

AIM2: Mitigation on AIM Cryptanalysis
0000e

Structural Vulnerability - Linearization Attack

Linearization attack by Zhang et al. (ASIACRYPT 2023)

FMW o Merle;](pt) = (pt?)* - pt?" for
Y some d | 2" — 1.
pt | Mer[es] Merle.] - ct
L @ Guessing pt? can linearize the first
Mer(es] round S-boxes.

(t=3) xo'F[iv]

Scheme n Brute-Force [bits] d Time [bits]?

AIM-l 128 21463 5 2160 (0.3)
AIM-1I1 192 22118 45 22104 (_1.4)
AIM-V 256 2276.7 3 22770

31t is re-analyzed complexity: https://eprint.iacr.org/2023/1474
32/39

https://eprint.iacr.org/2023/1474

AIM2: Mitigation on AIM Cryptanalysis

AIM2: Secure Patch for Algebraic Attacks

pt

Mere;] !

Merfes] Merle.] |

Merles] ™

» D
"N
» D
o
*

Y2
» D

* 1
(t=3) XOF(iv]

V3
@ Inverse Mersenne S-box
@ Larger exponents

@ Fixed constant addition

®000000

Scheme A n

! e1 ex e3 es

AIM2-1 128 128
AIM2-111 192 192
AIM2-V 256 256

249 91 - 3
217 471 - 5
311 141 7 3

33/39

AIM2: Mitigation on AIM Cryptanalysis
0®00000

Inverse Mersenne S-box with Large Exponents

Scheme A n £ ey ey e3 ex

¢ ferfer]” AIM2-1 128 128 2 49 91 - 3

" AIM2-111 192 192 2 17 47 - 5

N NN Merle.] bt <t AIM2-V 256 256 3 11 141 7 3
o AIM-l 128 128 2 3 27 - 5§
@) AIM-IIl 192 192 2 5 29 - 7

4 AIM-V 256 256 3 3 53 7 5

1
(t=3) XOF[iv]

Inverse Mersenne S-box with large exponents

T3

@ Mer[e]71(x) = 2% where a = (2 — 1)7! mod (2" — 1)
@ One multiplication for its proof (Mer[e] " (z) =y <= zy =14*")

@ More resistance to algebraic attacks.

Use larger e to mitigate the fast exhaustive search.

34/39

AIM2: Mitigation on AIM Cryptanalysis
00e0000

Constant Addition

> D> Mer[e,] |

g

)

Y
D
<
Y

a

pt

Y

2>

Y

Mer[ea] ' Lin Merle.]

Mer[eg]’1 >

Y
2>
Y

(t=3) XOF(iv]

Fixed Constant Addition
@ Differentiate inputs of the S-boxes in the first round.

@ Mitigate the structural vulnerability of AIM while maintaining the
repetitive structure.

35/39

AIM2: Mitigation on AIM Cryptanalysis
000e000

Algebraic Analysis on AIM2

t1

Y

Ver[eq]™
o
> P>-Mer le2]”
¢

A 4
[
t

Merle.] ct

t3

(t=3) XOII:[iv]

@ t; =Merle;] Lz @) <= z®vi = Merlei](t:) <= (x @)t =17
@ @t =Merle.](z) <= z=Merle.] Lz Bct) <= (zBct)z =2
® t; = Mer[e;] ™" (Mere;](t;) ®v; @ 7i)

36/39

AIM2: Mitigation on AIM Cryptanalysis
0000e00

Algebraic Analysis on AIM2

Scheme #Var Variables (# Eq, Deg) Complexity

AIM2-| n t (n, 60) -
2n tl, t2 (37’L, 2) 2207'9
3n x, by, to (12n,2) 2185.3

AIM2-111 n x (2n,114) -
on ty, ty (3n,2) 23019
3n oz, ty, to (12n,2) 22624

AlM2-V n x (2n,172) -
2n tg, 2 (n,2) + (2n, 38) 2513.5
37’L tl, tg, t3 (671,, 2) 2503'7
4n x, tl, tg, t3 (1871,2) 2411'4

37/39

AIM2: Mitigation on AIM Cryptanalysis
0000080

AlMer ver.2.0 with AIM?2

Scheme Keygen (ms) Sign (ms) Verify (ms) Size (B)

aimer128f (ver.1.0) 0.02 0.60 0.53 5904
(ver20) 003 042 (041 5888

aimerl28s (ver.1.0) 0.02 4.60 4.47 4176

(ver.2.0) 0.03 3.18 3.13 4160

aimerl92f (ver.1.0) 0.03 1.39 1.28 13080
(ver.2.0) 0.05 104 103 13056

aimer192s ~ (ver.1.0) 0.03 10.04 9.90 9144

(ver.2.0) 0.05 7.94 7.86 9120

aimer256f (ver.1.0) 0.08 2.50 2.34 25152
(ver.2.0) 0.10 207 203 25120

aimer256s ~ (ver10) 008 " 19.93 18.68 17088

(ver.2.0) 0.10 15.26 14.81 17056

@ Experiments are measured in Intel Xeon E5-1650 v3 @ 3.50GHz
with 128 GB memory, AVX2 enabled

38/39

AIM2: Mitigation on AIM Cryptanalysis
000000e

AlMer ver.2.0 with AIM?2

Type Scheme [pk| (B) |sig| (B) Sign (ms) Verify (ms)
Dilithium?2 1312 2420 0.10 0.03
Latticebaced Falcon-512 897 690 0.27 0.04
athice-base HAETAE-120 992 1474 0.56 0.03
NCC-Sign-cyclo (ref)t 1564 2458 0.24 0.06
MQ-based MQ-Sign-RRT 308441 134 0.05 0.02
Hash-baced SPHINCS*-128s* 32 7856 315.74 0.35
ash-base SPHINCS+-128f" 32 17088 16.32 0.97
. aimer128s (ver.2.0) 32 4160 3.18 3.13
MPCith-based i r128f (ver.2.0) 32 5883 0.42 0.41

*. -SHAKE-simple
t: performances in CPU cycles are converted into ms

@ Experiments are measured in Intel Xeon E5-1650 v3 @ 3.50GHz
with 128 GB memory, AVX2 enabled

@ A memory-optimized version requires up to 174 KB of memory for
all the parameter sets, which fits well into ARM Cortex-M4

39/39

Thank you!
Check out our website!

	Introduction
	MPCitH-based Digital Signature
	AIMer Signature

	Preliminaries
	MPC-in-the-Head

	Recap on AIM
	Change Log from KpqC Round 1
	Change of Specification

	AIM2: Mitigation on AIM Cryptanalysis
	Recent Analysis on AIM
	AIM2

