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MPCitH-based Digital Signature

o ZKP-based digital signature is based on a zero-knowledge
proof of knowledge of a solution to a certain hard problem
e For example, finding a preimage of a one-way function
o Efficiency of the ZKP-based signature is determined by choice
of one-way function and zero-knowledge proof system

o MPCitH paradigm is to build the ZKP system by simulating
an MPC process computing the one-way function
@ Characteristics of the MPCitH-based digital signature is:

Security relying only on the one-wayness of the one-way
function
Trade-off between time & size
Small public key and secret key
V" Relatively large signature size and sign/verify time
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AlMer Signature

@ AlMer: MPCitH-based digital signature based on

o (Ver.1.0) AIM and BN-++ proof system
o (Ver.2.0) AIM2 and customized BN++ proof system

e AIM (and AIM2): symmetric primitive based one-way function
that fully exploits repeated multiplier technique to reduce a
signature size

Mer[e]
’—> 4
pt »| Mer|e,] Merle.] @ ct
L Mer|es) |

(t=3) xo%@
AIM
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/ZKP from MPC-in-the-Head

MPC-in-the-head FS-transform OWF

Y _ N N

Interactive
ZK

Digital
Signature
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MPC-in-the-Head

. Share
Variable Value
Party 1 Party 2 Party3 Party4 Party5b
T 5 6 1 3 9 2
y 10 0 6 7 5 6
z 9 4 1 2 7 1

Example of MPC-in-the-head setting for N = 5 parties over Fy;

@ MPC-in-the-head is a Zero-Knowledge protocol by running the
MPC protocol in prover's head

o In the multiparty computation setting, z(¥) denotes the i-th
party’s additive share of z, 3", 2() =

@ N parties have a shares of x, y, and z which satisfies xy = z.
They wants to prove that zy = 2z without reveal the value

@ N parties and verifier run 5 rounds interactive protocol
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MPC-in-the-Head - Toy Example

. Share
Phase  Variable Value
Party 1 Party 2 Party 3 Party 4 Party 5
x 5 6 1 3 9 2
y 10 0 6 7 5 6
z 9 1 1 2 7 1
Phase 1 a 7 2 6 2 3 9
6 ! 3 0 1 3
c | 6 3 7 7 5

com  h(5,10,9,7,6,4) h(6,0,4,2,4,6) h(1,6,1,6,3,3) h(3,7,2,2,0,7) h(9,5,7,3,1,7)

Gray values are hidden to the verifier

Phase 1
@ N parties generate the shares of the another multiplication
triples (a, b, ¢) which satisfies ab = ¢

e Each party commits® to their own shares and open it

1Commit means that keeping the value hidden to others, with the ability to

reveal the committed value later
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MPC-in-the-Head - Toy Example

Share
Phase  Variable Value
Party 1 Party 2 Party 3 Party 4 Party 5

RS
o o~ W

w

S

6 ! 3 0

Phase 1 a 7 2 6 2 3 9
1 3
7

c | 6 3 [

com  h(5,10,9,7,6,4) h(6,0,4,2,4,6) h(1,6,1,6,3,3) h(3,7,2,2,0,7) h(9,5,7,3,1,7) -

Phase 2 Random challenge r = 5 from the verifier

Phase 2
@ Verifier sends random challenge r to parties
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MPC-in-the-Head - Toy Example

i Share
Phase  Variable Value
Party 1 Party 2 Party 3 Party 4 Party 5
x 5 6 1 3 9 2
10 0 6 7 5 6
z 9 1 1 2 7 1
Phase 1 a 7 2 6 2 3 9
b 6 | 3 0 1 3
c | 6 3 7 7 5
com  R(5,10,9,7,.6,4) h(6,0,4,2,4,6) h(1,6,1,6,3,3) h(3,7,2.2,0,7) h(9,5,7,3,1,7)
Phase 2 Random challenge r = 5 from the verifier
a 10 10 0 6 4 8
Phase 3 B 5 4 9 7 6 9
v 3 9 3 10 8 0
Phase 3

@ The parties locally set o”) =7 - 2 4+ a() B = () 4 p() and
broadcast them
@ The parties locally set
v\ = ) ) ) )
rez2@® — @ 4o b® 4 8. g otherwise
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MPC-in-the-Head - Toy Example

Share

Phase  Variable Value
Party 1 Party 2 Party 3 Party 4 Party 5
T 5 6 1 3 9 2
10 0 6 7 > 6
z 9 1 1 2 7 1
Phase 1 a 7 2 6 2 3 9
b 6 1 3 0 1 3
c 1 6 3 7 7 5

com  h(5,10,9,7,6,4) h(6,0,4,2,4,6) h(1,6,1,6,3,3) h(3,7,2,2,0,7) h(9,5,7,3,1,7) -

Phase 2 Random challenge r = 5 from the verifier
a 10 1 0 6 4 8
Phase 3 B 5 4 9 7 6 9
v 3 9 3 10 8 0

Phase 3 (Cont’)
e Each party opens v(¥) to compute v

o Ifab=cand zy = 2z, then v =0
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MPC-in-the-Head - Toy Example

. Share
Phase  Variable Value
Party 1 Party 2 Party 3 Party 4 Party 5
x 5 6 1 3 9 2
y 10 0 6 7 5 6
z 9 1 1 2 7 1
Phase 1 a 7 2 6 2 3 9
b 6 1 3 0 1 3
c | 6 3 7 7 5
com h(5,10,9,7,6,4) h(6,0,4,2,4,6) h(1,6,1,6,3,3) h(3,7,2,2,0,7) h(9,5,7,3,1,7) -
Phase 2 Random challenge r = 5 from the verifier
o 10 10 0 6 4 8
Phase 3 8 5 4 9 7 6 9
v 3 9 3 10 8 0
Phase 4 Random challenge i = 4 from the verifier
Phase 4

@ Verifier sends a hidden party index i to parties
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MPC-in-the-Head - Toy Example

Share
Phase  Variable Value
Party 1 Party 2 Party 3 Party 4 Party 5
x 5 6 1 3 9 2
y 10 6 7 5 6
z 9 4 1 2 7 1
Phase 1 a 7 2 6 2 3 9
b 6 4 3 0 1 3
c 4 6 3 7 7 5
com h(5,10,9,7,6,4) h(6,0,4,2,4,6) h(1,6,1,6,3,3) h(3,7,2,2,0,7) h(9,5,7.3,1,7) -
Phase 2 Random challenge = 5 from the verifier
@ 10 10 0 6 1 8
Phase 3 8 5 4 9 7 6 9
v 3 9 3 10 8 0
Phase 4 Random challenge i = 4 from the verifier
Phase 5 Open all parties except i-th party and check consistency
Phase 5
e Each party i € [N]\{i} sends (), 4@ 2 ¢ p@ and c®
to verifier

@ Verifier checks the consistency of the received shares
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MPC-in-the-Head

@ Some agreed-upon circuit C' : F™ — F™ and some output y,
prover wants to prove knowledge of input x = (z1,...,2,)
such that C'(x) = y without revealing x

@ The single prover simulates N parties in prover's head. Prover
first divides the input x1,...,x, into shares :vgi), . ,xg)

e For each addition ¢ = a + b, ¢ = q() 4 p(@)

@ For each multiplication ¢ = ab, prover divides c into shares
¢ = ¢ then run multiplication check protocol
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MPC-in-the-Head - Toy Example

C(x1,22,23) = (21 + 22 - 3) - 22 = 10

Share
Variable Value
Party 1 Party2 Party3 Party4 Partyb
T 7 2 1 3 0 2
2 3 5 10 5 5 6
T3 9 5 9 3 10 3
I - X3 2 4 3 5 4 7
i 2 9 6 4 8 4 9
(1’1 + 9 - 1'3) o) 8 3 0 4 6 10

e Addition is almost free, so that efficiency is highly depend on
the number of the multiplications

@ Soundness error is proportional to 1/N and 1/|F|
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Fiat-Shamir Transform

@ Prover derives r and i from hash of the data of previous round
without interaction. This technique is called Fiat-Shamir
Transform

@ Using Fiat-Shamir transform, interactive proof can be
transformed into non-interactive proof

@ Non-interactive zero-knowledge proof of knowledge of = which
satisfies f(z) = y for some one-way function f and output y
is a digital signature

e Public key: output y
e Private key: input x
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AIM - Specification

pt

(t=3) XOII:[iv]

@ Mersenne S-box: Merl[e](z) = 2"~}

e Randomized affine layer: Lin(x) = Az + b

@ Repetitive structure

Merl[e;] -
’_» v Scheme A n [ e e e3 e
»| Mer[eo] 9| Lin Mer[e,] @ ct AIM-I 128 128 2 3 927 - 5
AIM-IIl 192 192 2 5 20 - 7
Merfes] o 4 AIM-V 256 256 3 3 53 7 5
1
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AIM - Design Rationale

Mer[e; ]|

pt

Mer[eo] 9 Lin Merle,| B-@» ct

v 3

Mer|es] ]

XOIF[iv]

Mersenne S-box
Merl[e](z) = 2" ~!

@ Only one multiplication is required for its proof (zy = x2°)
@ More secure than Inv S-box against algebraic attacks on [y
°

Providing moderate DC/LC resistance
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AIM - Design Rationale

Mer(ey] -
’—> 4
pt | Mer[eo] 9~ Lin Mer[e.]

L Merles] -9~

Random Affine Layer

XOIF[iv]

@ Random affine layer increases the algebraic degree of
equations over Fon

@ In order to mitigate multi-target attacks, the affine map is
uniquely generated for each user’s iv

20/39



Recap on AIM
[e]e]ele] lele]

AIM - Design Rationale

Mer(e; ] -]
’_» hd
Mer[eo] | Lin Merle.| -

pt >
L Merl[es] |-

Repetitive Structure

A

ct

XOLU@

@ In ZKP-based digital signature, efficiency is highly depend on
the number of the multiplications

@ In BN++ proof system, when multiplication triples use an
identical multiplier in common, the proof can be done in a
batched way, reducing the signature size

@ AIM allows us to take full advantage of this technique
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Algebraic Analysis on AIM

1
Mer|e1 ] AR
- Y
x > Mer|es] >, Lin z Mer[e,] —>@D—> ct
Y-
Mer[eg] U3 >
|
1
XOF|iv]
9e

@ y; = Merfe;](z) <= z = Mer[e;] ' (y) <= zy==z
@ = @®ct=Merle.](z) < z=Merfe.] (zDct) <= z(z@®ct) =2

@ y; = Mer[e;] o Mer[e;] ™ (y;) = Merle;] (Merle.](z) @ ct)
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Algebraic Analysis on AIM

Scheme  #Var Variables (# Eq, Deg) Complexity
AlIM-I| n z (3n,10) 9300.8
2n oz, (3n,2) + (3n,4) 9214.9
3n. T,y Y2 (9n,2) 9222.8
AIM-1II n z (3n, 14) 4740
2n Z, Y2 (3n,2) + (3n,6) 9310.6
3n Z, Y1, Y2 (9n, 2) 9310.8
AIM-V n z (3n, 12) 9601.1
2n x, Y2 (3n,2) + (3n,8) 9406.2
3n Z, Y2, Y3 (6n,2) + ( ,4) 9510.4
an x, Y1, Y2, y3  (12n,2) 9530.3
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Change of Specification

@ We enhance the symmetric primitive AIM — AIM2 without
performance degradation.

@ The number of parameter sets are decreased from 4 to 2. The
parameters are distinguished with name “-s” and “-f".

@ Two hash functions with the same input is now integrated:
Expand + Commit — CommitAndExpand.

@ The salt size is now halved: 2\ — X bits.
@ The message to be signed is now pre-hashed.

@ Hash functions are now domain-separated.
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Other Changes

Implementational Change

@ We newly develop a reference code whose readability is significantly
enhanced.

@ There are now 4 types of source codes available: reference C,
optimized C, AVX2, and ARM64.

@ AVX2 optimization now enjoys a full parallelization of MPC
simulations (30% sign time reduction).

@ OpenSSL dependency is removed.
@ Memory usage is reduced (195 KB — 150 KB for aimer128f).
Editorial Change

@ The security proof (EUF-CMA) now guarantees full-bound security
rather than birthday-bound security.

@ Detailed specification which corresponds the reference code is now
available.
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Recent Analysis on AIM

Recent algebraic analysis on AIM:

@ Fukang Liu, et al. “Algebraic Attacks on RAIN and AIM Using
Equivalent Representations”, ToSC 2023.

@ Private communication with Fukang Liu.

@ Markku-Juhani O. Saarinen. “Round 1 (Additional Signatures)
OFFICIAL_.COMMENT: AIMER", pqc-forum?.

@ Kaiyi Zhang, et al. “Algebraic Attacks on Round-Reduced RAIN and
Full AIM-111", ASIACRYPT 2023.

There are two vulnerabilities in the structure of AIM.
@ Low degree equations in n variables.

@ Structural vulnerability: common input to the parallel S-boxes.

2htt’.ps ://groups.google.com/a/list.nist.gov/g/pqc-forum/c/BI2i1XblNy0
28/39


https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/BI2ilXblNy0

AIM2: Mitigation on AIM Cryptanalysis
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Low Degree Equations in n Variables

Fast exhaustive search by Fukang Liu. (ToSC 2023)

@ Build low degree equations in n

Scheme Var 7 Eq Deg Boolean variables.
AIM-I z 3n 10 @ Apply fast exhaustive search attack
AIM-III z 3n 14 . .. o

with memory-efficient Mobius
AIM-V z 3n 12

transform.

Scheme n  Brute-Force [bits] Time [bits] Memory [bits]

AIM-I 128 2146.3 21862 (—10.1) 2617
AIM-II1 192 22118 22007 (—11.1) 2843
AIM-V 256 2276.7 22050 (—11.7) 2951
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Structural Vulnerability - System with New Variables

Private communication with Fukang Liu.

Ve @ w:=pt~! = Mer[e](pt) = pt*“w
’—’ ! @ 2n-variable system having
pt »| Mer[e,) Merle.] @ ct .
e 5n quadratic eqs from
Mer|es] w = pt_l
. e 5n cubic eqs from Mer[e,]
(t=3)  XOF[iv]

No practical attack exists on the above system, but it was not considered
in the first proposal.
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Structural Vulnerability - Efficient Brute-Force Search

NIST official comment on the additional signature by Saarinen.

e w:=pt~! = Merle](pt) = pt* w
Merle;]
’—’ @ Merle;](pt) can be computed by
ot Lol erfen) Merle.] l-gp <t precomputingethe linear matrix for
L E;:pt— pt?".
Merfes] @ It might enable faster exhaustive

1
((=3)  XOF[] search.

We analyzed the gate-complexity of AIM using this approach and verified
that it is still larger than that of AES.
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Structural Vulnerability - Linearization Attack

Linearization attack by Zhang et al. (ASIACRYPT 2023)

FMW o Merle;](pt) = (pt?)* - pt?" for
Y some d | 2" — 1.
pt | Mer[es] Merle.] - ct
L @ Guessing pt? can linearize the first
Mer(es] round S-boxes.

(t=3) xo'F[iv]

Scheme n  Brute-Force [bits] d Time [bits]?

AIM-l 128 21463 5 2160 (0.3)
AIM-1I1 192 22118 45 22104 (_1.4)
AIM-V 256 2276.7 3 22770

31t is re-analyzed complexity: https://eprint.iacr.org/2023/1474
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AIM2: Mitigation on AIM Cryptanalysis

AIM2: Secure Patch for Algebraic Attacks

pt

Mere;] !

Merfes] Merle.] |

Merles] ™

» D
"N
» D
o
*

Y2
» D

* 1
(t=3) XOF(iv]

V3
@ Inverse Mersenne S-box
@ Larger exponents

@ Fixed constant addition

®000000

Scheme A n

! e1 ex e3 es

AIM2-1 128 128
AIM2-111 192 192
AIM2-V 256 256

249 91 - 3
217 471 - 5
311 141 7 3
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Inverse Mersenne S-box with Large Exponents

Scheme A n £ ey ey e3 ex

¢ ferfer]” AIM2-1 128 128 2 49 91 - 3

" AIM2-111 192 192 2 17 47 - 5

N NN Merle.] bt <t AIM2-V 256 256 3 11 141 7 3
o AIM-l 128 128 2 3 27 - 5§
@) AIM-IIl 192 192 2 5 29 - 7

4 AIM-V 256 256 3 3 53 7 5

1
(t=3) XOF[iv]

Inverse Mersenne S-box with large exponents

T3

@ Mer[e]71(x) = 2% where a = (2 — 1)7! mod (2" — 1)
@ One multiplication for its proof (Mer[e] " (z) =y <= zy =14*")

@ More resistance to algebraic attacks.

Use larger e to mitigate the fast exhaustive search.
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Constant Addition

> D> Mer[e,] |

g

)

Y
D
<
Y

a

pt

Y

2>

Y

Mer[ea] ' Lin Merle.]

Mer[eg]’1 >

Y
2>
Y

(t=3) XOF(iv]

Fixed Constant Addition
@ Differentiate inputs of the S-boxes in the first round.

@ Mitigate the structural vulnerability of AIM while maintaining the
repetitive structure.
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Algebraic Analysis on AIM2

t1

Y

Ver[eq]™
o
> P>-Mer le2]”
¢

A 4
[
t

Merle.] ct

t3

(t=3) XOII:[iv]

@ t; =Merle;] Lz @) <= z®vi = Merlei](t:) <= (x @)t =17
@ @t =Merle.](z) <= z=Merle.] Lz Bct) <= (zBct)z =2
® t; = Mer[e;] ™" (Mere;](t;) ®v; @ 7i)
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Algebraic Analysis on AIM2

Scheme  #Var  Variables (# Eq, Deg) Complexity

AIM2-| n t (n, 60) -
2n tl, t2 (37’L, 2) 2207'9
3n  x, by, to (12n,2) 2185.3

AIM2-111 n x (2n,114) -
on  ty, ty (3n,2) 23019
3n oz, ty, to (12n,2) 22624

AlM2-V n x (2n,172) -
2n  tg, 2 (n,2) + (2n, 38) 2513.5
37’L tl, tg, t3 (671,, 2) 2503'7
4n x, tl, tg, t3 (1871,2) 2411'4
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AlMer ver.2.0 with AIM?2

Scheme Keygen (ms) Sign (ms) Verify (ms) Size (B)

aimer128f  (ver.1.0) 0.02 0.60 0.53 5904
(ver20) 003 042 ( 041 5888

aimerl28s  (ver.1.0) 0.02 4.60 4.47 4176

(ver.2.0) 0.03 3.18 3.13 4160

aimerl92f  (ver.1.0) 0.03 1.39 1.28 13080
(ver.2.0) 0.05 104 103 13056

aimer192s ~ (ver.1.0)  0.03 10.04 9.90 9144

(ver.2.0) 0.05 7.94 7.86 9120

aimer256f  (ver.1.0) 0.08 2.50 2.34 25152
(ver.2.0) 0.10 207 203 25120

aimer256s ~ (ver10) 008 " 19.93 18.68 17088

(ver.2.0) 0.10 15.26 14.81 17056

@ Experiments are measured in Intel Xeon E5-1650 v3 @ 3.50GHz
with 128 GB memory, AVX2 enabled
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AlMer ver.2.0 with AIM?2

Type Scheme [pk| (B) |sig| (B) Sign (ms) Verify (ms)
Dilithium?2 1312 2420 0.10 0.03
Latticebaced Falcon-512 897 690 0.27 0.04
athice-base HAETAE-120 992 1474 0.56 0.03
NCC-Sign-cyclo (ref)t 1564 2458 0.24 0.06
MQ-based MQ-Sign-RRT 308441 134 0.05 0.02
Hash-baced SPHINCS*-128s* 32 7856 315.74 0.35
ash-base SPHINCS+-128f" 32 17088 16.32 0.97
. aimer128s (ver.2.0) 32 4160 3.18 3.13
MPCith-based i r128f (ver.2.0) 32 5883 0.42 0.41

*. -SHAKE-simple
t: performances in CPU cycles are converted into ms

@ Experiments are measured in Intel Xeon E5-1650 v3 @ 3.50GHz
with 128 GB memory, AVX2 enabled

@ A memory-optimized version requires up to 174 KB of memory for
all the parameter sets, which fits well into ARM Cortex-M4
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Thank you!
Check out our website!
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